Subscribe Now

# SSC CHSL Quiz : Quantitative Aptitude | 04 - 03 - 18

Mahendra Guru

In SSC exam quantitative Aptitude section is more scoring and easy if you know the shorts tricks and formulas of all the topic. So, it is important to know the basic concept of all the topic so you can apply the short tricks and solve the question with the new concept in lesser time while giving the quiz. It will help you to score more marks from this section in less time period. Quantitative Aptitude section basically measures your mathematical and calculation approach of solving the question. SSC Quiz Of quantitative Aptitude section helps you to analysis your preparation level for upcoming SSC examination. Mahendra Guru provides you Quantitative Aptitude Quiz for SSC examination based on the latest pattern. So that you can practice on regular basis. It will definitely help you to score good marks in the exam. It is the most important section for all the govt exam like Insurance, SSC-MTS, CGL, CHSL, State Level, and other Competitive exams.

You can clear your doubts before examMahendra Guru also provides you an important note and study material for all subject and test through its website, Mahendra Guru App and YouTube channel apart from it Speed Test Portal. Most of these preparation products are also available for purchase on my shop. You can also visit Mahendras.org to get more information about our endeavour for your success. You can also study in details through our E-Mahendras Facebook and Mahendra Guru YouTube channel of Quantitative Aptitude.

Q.1 The length of two chords AB andAC of a circle are 8 cm. and 6 cm and BAC = 900 , then the radius of circle is-

рдПрдХ рд╡ृрдд्рдд рдХी рджो рдЬीрд╡ाрдУं рдХी рд▓рдо्рдмाрдИ 8 рд╕ेрдоी рдФрд░ 6 рд╕ेрдоी рд╣ै рддрдеा BAC = 900 рддो рд╡ृрдд्рдд рдХी рдд्рд░िрдЬ्рдпा рд╣ै-

(A)             3
(B)              4.5
(C)              5
(D)             5.4

Q.2 The point D and E are taken on the side AB and AC of ╬Ф ABC, such that AD = 1/3 AB, AE=1/3AC. If the length of BC is 18 cm. Then the length of DE is-

╬Ф ABC рдХी рднुрдЬाрдУं AB рддрдеा AB рдкрд░ рджो рдмिंрджु рдЗрд╕ рдк्рд░рдХाрд░ рдЪुрдиे рдЧрдпे рд╣ै рдХि AD = 1/3 AB, рддрдеा AE=1/3AC рд╣ै। рдпрджि BC рдХी рд▓рдо्рдмाрдИ 15 рд╕ेрдоी рд╣ै рддрджрдиुрд╕ाрд░ DE рдХी рд▓рдо्рдмाрдИ рдХिрддрдиी рд╣ोрдЧी?

(A) 9
(B)  6
(C)  5
(D) 3

Q.3 An interior angle of a regular polygon is 1400 . What is the number of sides?

рдПрдХ рд╕рдордмрд╣ुрднुрдЬ рдХा рдЖंрддрд░िрдХ рдХोрдг 1400 рд╣ै। рддрдж्рдиुрд╕ाрд░ рдЙрд╕рдХी рднुрдЬाрдУं рдХी рд╕ंрдЦ्рдпा рдХिрддрдиी рд╣ै?

1. (A) 13
(B)  10
(C)  9
(D) 11
Q.4   O is the in centre of ╬Ф ABC and 440 then BOC is-

╬Ф ABC рдХा рдЕंрддः рдХेंрдж्рд░ O рд╣ै рдФрд░  A = 440 рддो  BOC рд╣ै-

(A) 115
(B)  112
(C)  105

(D) 135
Q.5 X can do a certain work in 8days while Y in 12 days. If Z joins them they together can do the work in 3 days. If the total wages for the entire work be Rs. 400, how much Rs. X will get as per his efficiency?

X рдПрдХ рдХाрдо рдХो 8 рджिрди рдоें рдХрд░ рд╕рдХрддा рд╣ै рдЬрдмрдХि Y,12 рджिрдиों рдоें। рдпрджि Z рдЙрдирдХे рд╕ाрде рдХाрдо рдХрд░े рддो рд╡े рдХाрдо рдХो 3 рджिрдиों рдоें рдХрд░ рд▓ेрддे рд╣ैं। рдпрджि рдкूрд░े рдХाрдо рдХे рд▓िрдП рдордЬрджूрд░ी 400 рд░ूрдкрдпे рд╣ै рддो X рдЕрдкрдиी рдХाрд░्рдпрдХ्рд╖рдорддा рдХे рдЕрдиुрд╕ाрд░ рдХिрддрдиे рд░ूрдкрдпे рдк्рд░ाрдк्рдд рдХрд░ेрдЧा?

(A) 600
(B)  700
(C)  800
(D) 900
Q.6 The product of two alternate odd integers exceeds three times the smaller by 12. What is the larger number?

рджो рдПрдХाрди्рддрд░ рд╡िрд╖рдо рдкूрд░्рдгाрдХों рдХा рдЧुрдгрдирдлрд▓ рдЫोрдЯे рдХे рддीрди рдЧुрдиे рд╕े 12 рдЕрдзिрдХ рд╣ैं। рдмреЬी рд╕ंрдЦ्рдпा рдХ्рдпा рд╣ै?
1. (A) 3
(B)  5
(C)  7
(D)  9
Q.7 Consider those numbers between 300 and 400 such that when each number is divided by 6,9 and 12, it leaves 4 as remainder in each case. What is the sum of the numbers?

рдЙрди рд╕ंрдЦ्рдпाрдУं рдкрд░ рд╡िрдЪाрд░ рдХीрдЬिрдпे рдЬो 300 рдФрд░ 400 рдХे рдмीрдЪ рдоें рдЗрд╕ рдк्рд░рдХाрд░ рд╣ै рдХि рдк्рд░рдд्рдпेрдХ рд╕ंрдЦ्рдпा рдХो 6,9 рдФрд░ 12 рд╕े рднाрдЧ рджेрдиे рдкрд░ рдк्рд░рдд्рдпेрдХ рджрд╢ा рдоें 4 рд╢ेрд╖рдлрд▓ рдмрдЪे। рд╕ंрдЦ्рдпाрдУं рдХा рдпोрдЧ рдХ्рдпा рд╣ै?

1. (A) 692
(B)  830
(C)  732
(D) 1024
Q.8 A bike travels a distance of 200 km. at a constant speed. If the speed of the bike is increased by 5 km. an hour, the journey would have taken 2 h less. What is the speed of the bike?

рдПрдХ рдмाрдЗрдХ 200 рдХिрдоी. рдХी рджूрд░ी рдПрдХ рдиिрдпрдд рдЪाрд▓ рд╕े рдЪрд▓рддी рд╣ै। рдпрджि рдмाрдЗрдХ рдХी рдЪाрд▓ рдПрдХ рдШрдг्рдЯे рдоें рдкांрдЪ рдХिрд▓ोрдоीрдЯрд░ рдмреЭ рдЬाрдпे рддो рдпाрдд्рд░ा рдоें рджो рдШрдг्рдЯे рдХрдо рд╕рдордп рд▓рдЧेрдЧा। рдмाрдЗрдХ рдХी рдЪाрд▓ рдХ्рдпा рд╣ै?

1. (A) 10
(B)  18
(C)  20
(D) 22
Q.9 If the radius of the base and the height of a right circular cone are increased by 20%, then what is the approximate percentage increase in the volume?

рдпрджि рдПрдХ рд▓ंрдм рд╡ृрдд्рддीрдп рд╢ंрдХु рдХे рдЖрдзाрд░ рдХी рдд्рд░िрдЬ्рдпा рдФрд░ рдКँрдЪाрдИ 20% рдмреЭा рджी рдЬाрддी рд╣ै рддो рдЖрдпрддрди рдоें рдк्рд░рддिрд╢рдд рд╡ृрдж्рдзि рд▓рдЧрднрдЧ рдХ्рдпा рд╣ै?
1. (A) 64
(B)  68
(C)  73
(D) 78
Q.10 A man borrowed Rs. 40000 at the rate of 8% simple interest per year. At the end of second year he paid back a certain amount and at the end of fifth year he paid back Rs. 35690 and cleared the debt. What is the amount did he pay back after the second year?

рдПрдХ рдЖрджрдоी 40000 рд░ू. 8% рдк्рд░рддिрд╡рд░्рд╖ рд╕ाрдзाрд░рдг рдм्рдпाрдЬ рдХी рджрд░ рдкрд░ рдЙрдзाрд░ рд▓ेрддा рд╣ै। рджूрд╕рд░े рд╡рд░्рд╖ рдХी рд╕рдоाрдк्рддि рдкрд░ рд╡рд╣ рдПрдХ рдиिрд╢्рдЪिрдд рдзрдирд░ाрд╢ि рд╡ाрдкрд╕ рдЪुрдХрддा рдХрд░ рджेрддा рд╣ै, рдФрд░ рдкांрдЪрд╡े рд╡рд░्рд╖ рдХी рд╕рдоाрдк्рддि рдкрд░ рд╡рд╣ 35690 рд░ूрдкрдпे рд╡ाрдкрд╕ рдЪुрдХрддा рдХрд░ рдЛрдг рдХो рд╕рдоाрдк्рдд рдХрд░ рд▓ेрддा рд╣ै। рджूрд╕рд░े рд╡рд░्рд╖ рдХी рд╕рдоाрдк्рддि рдкрд░ рдЙрд╕рдиे рдХिрддрдиी рдзрдирд░ाрд╢ि рд╡ाрдкрд╕ рдЪुрдХрддा рдХी?

1. (A) 16600
(B)  16700
(C)  17200
(D) 17400
Solution
1. C

2.B

3.C

4.B

5.A

6.C
Let the first number be x and the alternate odd number is x+4.
According to the question,
x(x+4) = 3x +12
x2 + 4x = 3x + 12
x2 – x + 12 = 0
(x+4) (x – 3) = 0
x≠– 4
x = 3
Larger number = 3+4 = 7

7.A
LCM of 6, 9, 12 = 36
Number = 36 p + 4
and P = 9, 10
Required sum = 328 + 364 = 692
8.C

9.C

10.D
17400