Subscribe Now

# SSC CPO : Quantitative Aptitude Quiz | 23 - 04 - 18

Mahendra Guru : Online Videos For Govt. Exams

In SSC exam, quantitative Aptitude section is more scoring and easy, if you know the shorts tricks and formulas of all the topics. So, it is important to know the basic concepts of all the topics so you can apply the short tricks and solve the question with the new concept sin lesser time while giving the quiz. It will help you to score more marks from this section in less time period. Quantitative Aptitude section basically measures your mathematical and calculation approach of solving the question. SSC Quiz of quantitative Aptitude section helps you to analyse your preparation level for upcoming SSC examination. Mahendra Guru provides you Quantitative Aptitude Quiz for SSC examination based on the latest pattern so that you can practice on regular basis. It will definitely help you to score good marks in the exam. It is the most important section for all the govt exams like Insurance, SSC-MTS, SSC CPO , CGL, CHSL, State Level, and other Competitive exams.

Mahendra Guru also provides you important notes and study material for all subject and test through its website, Mahendra Guru App and YouTube channel apart from it Speed Test Portal. Most of these preparation products are also available for purchase on my shop. You can also visit Mahendras.org to get more information about our endeavour for your success. You can also study in details through our E-Mahendras Facebook and Mahendra Guru YouTube channel of Quantitative Aptitude.

Q-1 If p:q = 2 : 3, r : q = 5 : 4, s : r = 2 : 7 and s : t = 2 : 3 then find the value p : q : r : s : t.

यदि p:q = 2 : 3, r : q = 5 : 4, s : r = 2 : 7 और s : t = 2 : 3 तो p : q : r : s : t का मान ज्ञात कीजिए।
(A) 56 : 84 : 105 : 30 : 42
(B) 56 : 84 : 90 : 30 : 45
(C) 56 : 84 : 105 : 30 : 45
(D) 56 : 75 : 105 : 30 : 45

Q-2 Shweta can row 35 km upstream and 21 km downstream in six hours. She can also row 42 km. Upstream and 14 km. downstream in six hours and forty minutes. What is her speed upstream?

श्वेता छः घण्टे में 35 किमी. ऊर्ध्वप्रवाह और 21 किमी. अनुप्रवाह तैर सकती है। वह छः घण्टे 40 मिनट में 42 किमी. ऊर्ध्वप्रवाह और 14 किमी. अनुप्रवाह भी तैर सकती है। उसकी ऊर्ध्वप्रवाह चाल क्या है?
(A) 12
(B) 5
(C) 7
(D) 9

Q-3 A sum of Rs. 32000 is partly lent at simple interest and the remaining at compound interest for a period of two years in both cases. The rate of interest is 10% p.a. and the total interest earned at the end of two years is Rs. 6550. What is the sum lent at compound interest?

32000 रू. की राशि को अंशतः साधारण ब्याज पर उधार दिया गया है और शेष को चक्रवृद्धि ब्याज पर उधार दिया गया है जबकि दोनों 2 वर्ष के लिए देय है। ब्याज की दर 10% वार्षिक है और दो वर्ष के अन्त में कुल ब्याज 6550 रू. है। चक्रवृद्धि ब्याज पर दी गई राशि क्या है?
(A) 15000
(B) 20000
(C) 12000
(D) 17500
Q-4 If axa –bxb = 0, then the value of   is-

यदि axa –bxb = 0है तो का मान है-
(A)
(B)
(C)
(D)

Q-5 If sinθ+cosθ=p, then what is the value of sin6θ+cos6θ./ यदि sinθ+cosθ=p है तो sin6θ+cos6θ का मान है-

(A)
(B)
(C)
(D)

Q-6 The abscissa of a point P is twice its ordinate. If P is equidistant from A(2, –5) and B (–3, 6), then find the coordinate of P.

एक बिन्दु P का भुज इसकी कोटि का दोगुना है। यदि P बिन्दु A (2, –5) और B (–3, 6) से समान दूरी पर है, तो P के निर्देशांक ज्ञात कीजिए।
(A) 5
(B) 7
(C) 6
(D) 8

Q-7 Given that N=a+2b2+3c3. If a increases by 6300%, b increases by 700% and C increases by 300%, what is the percentage increase in the value of N.

दिया गया है N=a+2b2+3c3 यदि में 630% की वृद्धि की जाती है, b में 700% की वृद्धि की जाती है और c में 300% की वृद्धि की जाती है, N के मान क्या प्रतिशत परिवर्तन हुआ है?
(A) 5100%
(B) 6300%
(C) 7200%
(D) 8000%

Q-8 From the top of a hill, the angles of depression of two consecutive kilometre stones due east are found to 45o and 60o. Find the height of the hill.

एक पहाड़ की चोटी से पूर्व की ओर दो क्रमागत किलोमीटर पत्थर के अवनमन कोण क्रमशः 45o और 60o है। पहाड़ी की ऊँचाई ज्ञात कीजिए।
(A) 3.414 Km/किमी
(B) 2.366 Km/किमी
(C) 3.67 Km/किमी
(D) 2.67 Km/किमी

Q-9 ΔPQR is a right anlged trianlge at P and QR = 26 cm, 'M' is a point inside it. A triangle PMR formed in such that ∠PMR = 90o, PM = 6 cm. and MR = 8 cm. Find the area of ΔPQR.

ΔPQR , P पर समकोण है तथा QR = 26 सेमी. है, इसके अन्दर बिन्दु 'M' है। एक त्रिभुज PMR इस प्रकार बनाया जाता है कि ∠PMR = 90o, PM = 6सेमी. और MR = 8 सेमी. है। त्रिभुज PQR का क्षेत्रफल ज्ञात कीजिए।
(A) 360 cm2/सेमी2
(B) 180 cm2/सेमी2
(C) 120 cm2/सेमी2
(D) 240 cm2/सेमी2

Q-10 P is thrice as good workmen as Q and takes 10 days less to do a piece of work than Q takes. Find the time in which Q alone can complete the work.

P श्रमिक Q का तीन गुना सक्षम है और इस तरह एक कार्य को पूरा करने में Q से 10 दिन कम लेता है। वह समय ज्ञात कीजिए जिसमें Q अकेला कार्य को पूरा कर सकता है।
(A) 12 days/दिन
(B) 15 days/दिन
(C) 24 days/दिन
(D) 20 days/दिन

Q1-(C) p : q = (2 : 3) × 4
q : r = (4 : 5) × 3
p : q : r = (8 : 12 : 15) × 7
r : s = (7 : 2) × 15
p : q : r : s = 56 : 84 : 105 : 30
s :t = (2 : 3) × 15
p : q : r : s : t = 56 : 84 : 105 : 30 : 45

Q2-(C)

Q3-(A)
k = 6550×100–32000×20
k = 655000–640000
k = 15000

Q4-(A))  axa–bxb= 0
axa= bxb
Now, / अब

Q5-(C)

Q6-(D) Let co-ordinates of P /माना P के निर्देशांक = (2x, x)
According to question / प्रश्नानुसार
On squaring both the sides, we get
दोनों ओर वर्ग करने पर हम प्राप्त करते हैं
(2x–2)2 + (x+5)2 = (2x+3)2 + (x–6)2
4x2+4–8x+x2+25+10x
= 4x2+9+12x+x2+36–12x
2x = 16
x = 8

Q7-(B) Let a=b = c = 100
Initially, /मूलतःN = 100+2(100)2 + 3(100)3
= 100+2×10000+3×1000000
= 100+20000+3000000
= 3020100
Finally / अन्तिम रूप से
N = (100+6300)+2[100+700]2 +
3[100+300]2
= 6400+2[800]2 + 3[400]2
= 6400+2×640000+3×64000000
=193286400
% change / परिवर्तन

Q8-(B)
In DABD / DABD esa
tan45o = ,
h = BD = x+1 ----------- (1)
In DABC / DABC esa

tan60o = ,
h = (h–1) [From (1)] / से

=(–1)h
km. /fdeh-

Q9-(C)
In DPMR / DPMR esa
PR2 = 82+62 = 100
PR = 10
IN
DPQR / DPQR esa
PQ2 = QR2–PR2
= 262–102 = 576
PQ = 24

Area of DPQR / dk {ks=Qy
cm2

Q10-(B) Required number of days
अभीष्ट दिनों की संख्या