Subscribe Now

# SSC CPO : Quantitative Aptitude Quiz | 29 - 03 - 18

In SSC exam quantitative Aptitude section is more scoring and easy if you know the shorts tricks and formulas of all the topic. So, it is important to know the basic concept of all the topic so you can apply the short tricks and solve the question with the new concept in lesser time while giving the quiz. It will help you to score more marks from this section in less time period. Quantitative Aptitude section basically measures your mathematical and calculation approach of solving the question. SSC Quiz Of quantitative Aptitude section helps you to analysis your preparation level for upcoming SSC examination. Mahendra Guru provides you Quantitative Aptitude Quiz for SSC examination based on the latest pattern. So that you can practice on regular basis. It will definitely help you to score good marks in the exam. It is the most important section for all the govt exam like Insurance, SSC-MTS, SSC CPO , CGL, CHSL, State Level, and other Competitive exams.

You can clear your doubts before examMahendra Guru also provides you an important note and study material for all subject and test through its website, Mahendra Guru App and YouTube channel apart from it Speed Test Portal. Most of these preparation products are also available for purchase on my shop. You can also visit Mahendras.org to get more information about our endeavour for your success. You can also study in details through our E-Mahendras Facebook and Mahendra Guru YouTube channel of Quantitative Aptitude.

Q1.  If , then find the value of.
यदि , तो का मान ज्ञात कीजिये |

A)
B)
C)
D)

Q2. The perpendicular AD on the base BC of a ABC intersects BC at D so that DB = 3CD then 2 AC2 + BC2 =?

ΔABC के आधार BC पर AD लम्ब है, और BC को D पर इस प्रकार प्रतिच्छेद करता है कि DB = 3CD तो 2 AC2 + BC2 =?

A) 2 AB2

B) 3AB2

C) AB2

D) 5AB2

Q3.  A square sheet of paper is converted into a cylinder by rolling it along its length. What is the ratio of the base radius to the side of the square?

एक वर्गाकार कागज की चादर को इसके लंबाई के परितः घुमाकर एक बेलन बनाया जाता है। तो आधार की त्रिज्या का वर्ग की भुजा से अनुपात है
A)
B)
C)
D)

Q4. What is the minimum number of square marbles required to tile a floor of length 5 meters 78 cm. and width 3 meters 74 cm?

एक 5 मी.78 सेमी. लम्बी और 3 मी. 74 सेमी. चौड़ी फर्श पर वर्गाकार मार्बल टाइल लगाने के लिए कम से कम कितने टाइल की आवश्यकता होगी?

A) 176
B) 187
C) 540
D) 748

Q5-  If a merchant offers a discount of 40% on the marked price of his goods and thus ends up selling at cost price, what was the % mark up?

यदि एक व्यापारी अपनी वस्तुओं का बाजारी मूल्य पर 40% की छूट देता है और अंत में क्रय मूल्य पर बेचता है तो कितना % अधिक अंकित किया था?

A)  28.57%
B) 40%
C) 66.66%
D) 58.33%

Q6.  If apples are bought at the rate of 30 for a rupee. How many apples must be sold for a rupee to gain 20%?

यदि एक रू. में 30 सेब खरीदे जाते हैं तो 20% लाभ प्राप्त करने के लिये एक रू. में कितने सेब बेचने चाहिये?

A) 28
B) 25
C) 20
D) 22

Q7. The curved surface area of a cylindrical pillar is 264 m2 and its volume is 924 m3. Find the ratio of its diameter to its height.

एक बेलनाकार खम्भे के वक्र पृष्ठ का क्षेत्रफल 264 मी2 और इसका आयतन 924 मी3 है, तो इसके व्यास का ऊंचाई से अनुपात है -

A) 7 : 3
B)3 : 7
C) 6 : 7
D) 7 : 6

Q8. Find the value of (cosA - sinA)2 + (cosA + sinA)2
(cosA - sinA)2 +(cosA + sinA)2  का मान है –

A)  0
B) 1
C) 2
D) 3

Q9. Vimal travels a certain distance at a speed of 80 km/hr. If Sohel travels one third of that distance at a speed of 60 km/hr then at what speed he should travel the remaining distance if total time taken by both Vimal and Sohel was same for the given journey?

विमल एक निश्चित दूरी की 80 किमी प्रति घंटा की दर से यात्रा करता है | यदि सोहेल उस दूरी के एक तिहाई भाग की यात्रा 40 किमी/घंटे की दर से तय करता है, तो ज्ञात कीजिये कि उसे शेष दूरी को किस गति से तय करना चाहिए जिससे यात्रा में दोनों को लगने वाला समय सामान हो ?

A) 120 km/hr.
B) 160km/ hr.
C) 150 km/hr.
D) 180 km/hr.

Q10. If 1 + sin2 A = 3 sin A cos A, then what are the possible values of tan A?
यदि 1 + sin2 A = 3 sin A cos A तो tan A मान ज्ञात कीजिये।

A) 1 , 1/3
B) 1, 3
C) 1, 0
D) 1, 1/2

SULUTIONS:

Q1. (B)

cosθ =

sin2θ = 2sinθcosθ

Q2. (A)

by Pythagoras theorem , we have / पाइथागोरस प्रमेय से

Subtract eq. 2 from 1 then we have / समीकरण 2 को 1 से घटाने पर

Q3. (A)

Q4- (B)

Q5-(C)

Q6. (B)

Q7.  (A)

Q8. (C)

(cos A – sin A)2+ (cos A + sin A)2
= cos2 A + sin2 A – 2sin A.× cos A+ cos2 A + sin2 A + 2cosA.cosA = 2

Q9.  (B)

Let distance/माना दूरी = 3d km/किमी.
Time taken by Vimal/विमल द्वारा लिया गया समय + Time taken by Sohel/सोहेल द्वारा लिया गया समय = 3d / 80

s = 160 km/hr.

Q10) (D)

1 + sin2 A = 3 sin A cos A
Dividing both sides by cos2A/ दोनों पक्षों को cos2A से विभाजित करने पर;

Sec2A + tan2 A = 3 tan A
1+ tan2 A + tan2 A = 3 tan A
2 tan2 A – 3 tan A + 1 = 0
tan A = 1/2, 1